中国技术市场报头版头条:我国真核生物基因组设计合成获突破

2017-03-17 点击数:      

  

  《中国技术市场报》(2017年3月17 头版头条)

  本报天津消息(记者张熙 通讯员靳莹)日前,中国科学家在真核生物基因组设计与化学合成方面取得重大突破,完成了4条真核生物酿酒酵母染色体的从头设计与化学合成,打破了非生命物质与生命的界限,开启了“设计生命、再造生命和重塑生命”的进程。天津大学、清华大学、华大基因分别完成的4篇论文,于近日以封面的形式在国际顶级学术期刊《科学》上发表。

  合成生物学是继“DNA双螺旋发现”和“人类基因组测序计划”之后,以基因组设计合成为标志的第三次生物技术革命。酿酒酵母基因组合成计划(Sc2.0计划)是合成基因组学研究的标志性国际合作项目。该项目由美国科学院院士杰夫·伯克发起,有美国、中国、英国、法国、澳大利亚、新加坡等多国研究机构参与并分工协作,致力于设计和化学再造完整的酿酒酵母基因组。该计划的国际化推动者及中国最早参与者,天津大学化工学院教授元英进此次在《科学》期刊上以通讯作者身份发表了2篇论文。

  生物学界内最大的划分依据并不是植物和动物,也不是多细胞和单细胞生物,而是以原核生物和真核生物来区分。原核生物的基因组相对简单,而动物、植物、真菌等等真核生物的DNA既丰富又复杂,通常会包含数亿至甚至数十亿碱基对信息,同时遗传物质DNA

  通常被分配到不同的染色体中,而这些染色体又深藏在细胞核的特定区域。所以,合成一个真核生物的基因组是一项非常艰巨的任务。但是,如果生物学真正做到引领技术革命,合成真核生物基因组技术必将发挥非常核心的作用。

  酿酒酵母是生物学研究中的模式真核单细胞生物。元英进在接受采访时表示:“化学合成酵母一方面可以帮助人类更深刻地理解一些基础生物学的问题,另一方面可以通过基因组重排系统,实现快速进化,得到在医药、能源、环境、农业、工业等领域有重要应用潜力的菌株。”

  Sc2.0计划旨在重新设计并合成酿酒酵母的全部16条染色体(长约12Mb,Mb:百万碱基对)。2014年Sc2.0已创建了一个单一的人工酵母染色体,这次科学家们共完成了5条染色体的化学合成,其中中国科学家完成了4条,占完成数量的66.7%,把Sc2.0计划向前推进了一大步,意味着已经成功合成了酵母基因组的约三分之一。元英进带领的天津大学团队完成了5号、10号(synV、synX)染色体的化学合成,并开发了高效的染色体缺陷靶点定位技术和染色体点突变修复技术。戴俊彪研究员带领清华大学团队完成了当前已合成染色体中最长的12号染色体(synXII)的全合成。该工作奠定了未来对其他超大、结构超复杂的基因组进行设计与编写的基础,同时也证明了酵母基因组中rDNA(核糖体DNA)区域及其他序列均具有惊人的灵活度与可塑性。

  深圳华大基因研究院团队联合英国爱丁堡大学团队完成了2号染色体(synII)的合成及深度基因型-表型关联分析,证明了人工设计合成的酿酒酵母基因组可增加、可删减的高度灵活性。

  该团队的成员、synX文章第一作者、天津大学博士生吴毅表示:“人工合成基因组的尺度和复杂度的不断提升,向科学界对生物体运作方式以及生命本质的认知提出了越来越大的挑战。在合成长达770kb(kb:千碱基对)的酿酒酵母十号染色体的过程中,我们创建了基因组缺陷靶点快速定位与精确修复方法,解决了全化学合成基因组导致细胞失活的难题,所得到的全合成酵母染色体具备完整的生命活性,能够成功调控酵母的生长,并具备各种环境响应能力。此方法在化学合成基因组研究中具有普适性,并且作为一种新颖的表型和基因组关联性分析的策略,有望显著提升我们对基因组结构和功能的认知。”

  synV文章第一作者、天津大学博士生谢泽雄表示:“在全面推进Sc2.0计划的过程中,我们建立了基于多靶点片段共转化的基因组精确修复技术和DNA大片段重复修复技术,解决了超长人工DNA片段的精准合成难题。首次实现了真核人工基因组化学合成序列与设计序列的完全匹配,系统性支撑与评价了当前真核生物的设计原则。该技术的突破为研究人工设计基因组的重新设计、功能验证与技术改进奠定了基础。利用化学合成的酵母5号染色体定制化建立了一组环形染色体模型,通过人工基因组中设计的特异性水印标签实现对细胞分裂过程中染色体变化的追踪和分析,为研究当前无法治疗的环形染色体疾病、癌症和衰老等发生机理和潜在治疗手段提供了了研究模型。

  我国科学家在真核生物基因组设计与化学合成方面取得重大突破是我国在合成生物学领域取得的突破性成果,进一步奠定了我国在这一领域的国际地位。

  中国技术市场报:http://epaper.jwb.com.cn/zgjsscb/html/2017-03/17/content_1_1.htm

  (编辑 靳莹 陈岩岩)